Theorem resapp | index | src |

theorem resapp (A F: set) (a: nat): $ a e. A -> (F |` A) @ a = F @ a $;
StepHypRefExpression
1 eqapp
A. y (a, y e. F |` A <-> a, y e. F) -> (F |` A) @ a = F @ a
2 prelres
a, y e. F |` A <-> a, y e. F /\ a e. A
3 bian2
a e. A -> (a, y e. F /\ a e. A <-> a, y e. F)
4 2, 3 syl5bb
a e. A -> (a, y e. F |` A <-> a, y e. F)
5 4 iald
a e. A -> A. y (a, y e. F |` A <-> a, y e. F)
6 1, 5 syl
a e. A -> (F |` A) @ a = F @ a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)