Step | Hyp | Ref | Expression |
1 |
|
bian1a |
(F == G -> Dom F == Dom G) -> (Dom F == Dom G /\ F == G <-> F == G) |
2 |
|
dmeq |
F == G -> Dom F == Dom G |
3 |
1, 2 |
ax_mp |
Dom F == Dom G /\ F == G <-> F == G |
4 |
|
aneq2a |
(Dom F == Dom G -> (F == G <-> A. x (x e. Dom F -> F @ x = G @ x))) -> (Dom F == Dom G /\ F == G <-> Dom F == Dom G /\ A. x (x e. Dom F -> F @ x = G @ x)) |
5 |
|
axext2 |
F == G <-> A. x A. y (x, y e. F <-> x, y e. G) |
6 |
|
eqapp |
A. y (x, y e. F <-> x, y e. G) -> F @ x = G @ x |
7 |
6 |
a1d |
A. y (x, y e. F <-> x, y e. G) -> x e. Dom F -> F @ x = G @ x |
8 |
7 |
a1i |
isfun F /\ isfun G /\ Dom F == Dom G -> A. y (x, y e. F <-> x, y e. G) -> x e. Dom F -> F @ x = G @ x |
9 |
|
isfappb |
isfun F -> (x, y e. F <-> x e. Dom F /\ F @ x = y) |
10 |
|
an3l |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> isfun F |
11 |
9, 10 |
syl |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x, y e. F <-> x e. Dom F /\ F @ x = y) |
12 |
|
isfappb |
isfun G -> (x, y e. G <-> x e. Dom G /\ G @ x = y) |
13 |
|
anllr |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> isfun G |
14 |
12, 13 |
syl |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x, y e. G <-> x e. Dom G /\ G @ x = y) |
15 |
|
aneq2a |
(x e. Dom F -> (F @ x = y <-> G @ x = y)) -> (x e. Dom F /\ F @ x = y <-> x e. Dom F /\ G @ x = y) |
16 |
|
eqeq1 |
F @ x = G @ x -> (F @ x = y <-> G @ x = y) |
17 |
|
anr |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> x e. Dom F -> F @ x = G @ x |
18 |
16, 17 |
syl6 |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> x e. Dom F -> (F @ x = y <-> G @ x = y) |
19 |
15, 18 |
syl |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x e. Dom F /\ F @ x = y <-> x e. Dom F /\ G @ x = y) |
20 |
|
anlr |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> Dom F == Dom G |
21 |
20 |
eleq2d |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x e. Dom F <-> x e. Dom G) |
22 |
21 |
aneq1d |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x e. Dom F /\ G @ x = y <-> x e. Dom G /\ G @ x = y) |
23 |
19, 22 |
bitrd |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x e. Dom F /\ F @ x = y <-> x e. Dom G /\ G @ x = y) |
24 |
14, 23 |
bitr4d |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x, y e. G <-> x e. Dom F /\ F @ x = y) |
25 |
11, 24 |
bitr4d |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> (x, y e. F <-> x, y e. G) |
26 |
25 |
iald |
isfun F /\ isfun G /\ Dom F == Dom G /\ (x e. Dom F -> F @ x = G @ x) -> A. y (x, y e. F <-> x, y e. G) |
27 |
26 |
exp |
isfun F /\ isfun G /\ Dom F == Dom G -> (x e. Dom F -> F @ x = G @ x) -> A. y (x, y e. F <-> x, y e. G) |
28 |
8, 27 |
ibid |
isfun F /\ isfun G /\ Dom F == Dom G -> (A. y (x, y e. F <-> x, y e. G) <-> x e. Dom F -> F @ x = G @ x) |
29 |
28 |
aleqd |
isfun F /\ isfun G /\ Dom F == Dom G -> (A. x A. y (x, y e. F <-> x, y e. G) <-> A. x (x e. Dom F -> F @ x = G @ x)) |
30 |
5, 29 |
syl5bb |
isfun F /\ isfun G /\ Dom F == Dom G -> (F == G <-> A. x (x e. Dom F -> F @ x = G @ x)) |
31 |
30 |
exp |
isfun F /\ isfun G -> Dom F == Dom G -> (F == G <-> A. x (x e. Dom F -> F @ x = G @ x)) |
32 |
4, 31 |
syl |
isfun F /\ isfun G -> (Dom F == Dom G /\ F == G <-> Dom F == Dom G /\ A. x (x e. Dom F -> F @ x = G @ x)) |
33 |
3, 32 |
syl5bbr |
isfun F /\ isfun G -> (F == G <-> Dom F == Dom G /\ A. x (x e. Dom F -> F @ x = G @ x)) |