Theorem eqapp | index | src |

theorem eqapp (F G: set) (a: nat) {y: nat}:
  $ A. y (a, y e. F <-> a, y e. G) -> F @ a = G @ a $;
StepHypRefExpression
1 abeq
A. y (a, y e. F <-> a, y e. G) -> {y | a, y e. F} == {y | a, y e. G}
2 1 theeqd
A. y (a, y e. F <-> a, y e. G) -> the {y | a, y e. F} = the {y | a, y e. G}
3 2 conv app
A. y (a, y e. F <-> a, y e. G) -> F @ a = G @ a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)