Theorem ndmapp | index | src |

theorem ndmapp (F: set) (a: nat): $ ~a e. Dom F -> F @ a = 0 $;
StepHypRefExpression
1 preldm
a, y e. F -> a e. Dom F
2 absurd
~a e. Dom F -> a e. Dom F -> y = 0
3 1, 2 syl5
~a e. Dom F -> a, y e. F -> y = 0
4 3 eqthe0abd
~a e. Dom F -> the {y | a, y e. F} = 0
5 4 conv app
~a e. Dom F -> F @ a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)