Theorem isfappb | index | src |

theorem isfappb (F: set) (a b: nat):
  $ isfun F -> (a, b e. F <-> a e. Dom F /\ F @ a = b) $;
StepHypRefExpression
1 preldm
a, b e. F -> a e. Dom F
2 1 anwr
isfun F /\ a, b e. F -> a e. Dom F
3 anl
isfun F /\ a, b e. F -> isfun F
4 anr
isfun F /\ a, b e. F -> a, b e. F
5 3, 4 isfappd
isfun F /\ a, b e. F -> F @ a = b
6 2, 5 iand
isfun F /\ a, b e. F -> a e. Dom F /\ F @ a = b
7 eldm
a e. Dom F <-> E. a1 a, a1 e. F
8 anrl
isfun F /\ (a e. Dom F /\ F @ a = b) -> a e. Dom F
9 7, 8 sylib
isfun F /\ (a e. Dom F /\ F @ a = b) -> E. a1 a, a1 e. F
10 anll
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> isfun F
11 anr
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> a, a1 e. F
12 10, 11 isfappd
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> F @ a = a1
13 anrr
isfun F /\ (a e. Dom F /\ F @ a = b) -> F @ a = b
14 13 anwl
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> F @ a = b
15 12, 14 eqtr3d
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> a1 = b
16 15 preq2d
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> a, a1 = a, b
17 16 eleq1d
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> (a, a1 e. F <-> a, b e. F)
18 17, 11 mpbid
isfun F /\ (a e. Dom F /\ F @ a = b) /\ a, a1 e. F -> a, b e. F
19 18 eexda
isfun F /\ (a e. Dom F /\ F @ a = b) -> E. a1 a, a1 e. F -> a, b e. F
20 9, 19 mpd
isfun F /\ (a e. Dom F /\ F @ a = b) -> a, b e. F
21 6, 20 ibida
isfun F -> (a, b e. F <-> a e. Dom F /\ F @ a = b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)