Theorem isfappd | index | src |

theorem isfappd (F: set) (G: wff) (a b: nat):
  $ G -> isfun F $ >
  $ G -> a, b e. F $ >
  $ G -> F @ a = b $;
StepHypRefExpression
1 elrapp
x e. F @' a <-> a, x e. F
2 1 conv rapp
x e. {a1 | a, a1 e. F} <-> a, x e. F
3 eqcomb
b = x <-> x = b
4 hyp h1
G -> isfun F
5 hyp h2
G -> a, b e. F
6 4, 5 isfbd
G -> (a, x e. F <-> b = x)
7 3, 6 syl6bb
G -> (a, x e. F <-> x = b)
8 2, 7 syl5bb
G -> (x e. {a1 | a, a1 e. F} <-> x = b)
9 8 eqthed
G -> the {a1 | a, a1 e. F} = b
10 9 conv app
G -> F @ a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)