theorem nfapp {x: nat} (F: set x) (a: nat x):
$ FS/ x F $ >
$ FN/ x a $ >
$ FN/ x F @ a $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | FS/ x F |
|
| 2 | hyp h2 | FN/ x a |
|
| 3 | 1, 2 | nfrapp | FS/ x F @' a |
| 4 | 3 | conv rapp | FS/ x {a1 | a, a1 e. F} |
| 5 | 4 | nfthe | FN/ x the {a1 | a, a1 e. F} |
| 6 | 5 | conv app | FN/ x F @ a |