theorem nfapp {x: nat} (F: set x) (a: nat x): $ FS/ x F $ > $ FN/ x a $ > $ FN/ x F @ a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | FS/ x F |
|
2 | hyp h2 | FN/ x a |
|
3 | 1, 2 | nfrapp | FS/ x F @' a |
4 | 3 | conv rapp | FS/ x {a1 | a, a1 e. F} |
5 | 4 | nfthe | FN/ x the {a1 | a, a1 e. F} |
6 | 5 | conv app | FN/ x F @ a |