Theorem nfapp | index | src |

theorem nfapp {x: nat} (F: set x) (a: nat x):
  $ FS/ x F $ >
  $ FN/ x a $ >
  $ FN/ x F @ a $;
StepHypRefExpression
1 hyp h1
FS/ x F
2 hyp h2
FN/ x a
3 1, 2 nfrapp
FS/ x F @' a
4 3 conv rapp
FS/ x {a1 | a, a1 e. F}
5 4 nfthe
FN/ x the {a1 | a, a1 e. F}
6 5 conv app
FN/ x F @ a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)