Theorem isfbd | index | src |

theorem isfbd (F: set) (G: wff) (a b b2: nat):
  $ G -> isfun F $ >
  $ G -> a, b e. F $ >
  $ G -> (a, b2 e. F <-> b = b2) $;
StepHypRefExpression
1 hyp h1
G -> isfun F
2 1 anwl
G /\ a, b2 e. F -> isfun F
3 hyp h2
G -> a, b e. F
4 3 anwl
G /\ a, b2 e. F -> a, b e. F
5 anr
G /\ a, b2 e. F -> a, b2 e. F
6 2, 4, 5 isfd
G /\ a, b2 e. F -> b = b2
7 preq2
b = b2 -> a, b = a, b2
8 7 anwr
G /\ b = b2 -> a, b = a, b2
9 8 eleq1d
G /\ b = b2 -> (a, b e. F <-> a, b2 e. F)
10 3 anwl
G /\ b = b2 -> a, b e. F
11 9, 10 mpbid
G /\ b = b2 -> a, b2 e. F
12 6, 11 ibida
G -> (a, b2 e. F <-> b = b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)