Theorem eldm | index | src |

theorem eldm (A: set) (a: nat) {y: nat}: $ a e. Dom A <-> E. y a, y e. A $;
StepHypRefExpression
1 preq1
x = a -> x, y = a, y
2 1 eleq1d
x = a -> (x, y e. A <-> a, y e. A)
3 2 exeqd
x = a -> (E. y x, y e. A <-> E. y a, y e. A)
4 3 elabe
a e. {x | E. y x, y e. A} <-> E. y a, y e. A
5 4 conv Dom
a e. Dom A <-> E. y a, y e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)