theorem elrn (A: set) (a: nat) {x: nat}: $ a e. Ran A <-> E. x x, a e. A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | preq2 | y = a -> x, y = x, a | 
        
          | 2 | 1 | eleq1d | y = a -> (x, y e. A <-> x, a e. A) | 
        
          | 3 | 2 | exeqd | y = a -> (E. x x, y e. A <-> E. x x, a e. A) | 
        
          | 4 | 3 | elabe | a e. {y | E. x x, y e. A} <-> E. x x, a e. A | 
        
          | 5 | 4 | conv Ran | a e. Ran A <-> E. x x, a e. A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)