Theorem nfrn | index | src |

theorem nfrn {x: nat} (A: set x): $ FS/ x A $ > $ FS/ x Ran A $;
StepHypRefExpression
1 hyp h
FS/ x A
2 1 nfel2
F/ x a2, a1 e. A
3 2 nfex
F/ x E. a2 a2, a1 e. A
4 3 nfab
FS/ x {a1 | E. a2 a2, a1 e. A}
5 4 conv Ran
FS/ x Ran A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)