theorem appelima (A F: set) (G: wff) (a: nat):
$ G -> isfun F $ >
$ G -> a e. Dom F $ >
$ G -> a e. A $ >
$ G -> F @ a e. F '' A $;
Step | Hyp | Ref | Expression |
1 |
|
eleq2 |
Ran (F |` A) == F '' A -> (F @ a e. Ran (F |` A) <-> F @ a e. F '' A) |
2 |
|
rnres |
Ran (F |` A) == F '' A |
3 |
1, 2 |
ax_mp |
F @ a e. Ran (F |` A) <-> F @ a e. F '' A |
4 |
|
resapp |
a e. A -> (F |` A) @ a = F @ a |
5 |
|
hyp h3 |
G -> a e. A |
6 |
4, 5 |
syl |
G -> (F |` A) @ a = F @ a |
7 |
6 |
eleq1d |
G -> ((F |` A) @ a e. Ran (F |` A) <-> F @ a e. Ran (F |` A)) |
8 |
|
appelrn |
isfun (F |` A) -> a e. Dom (F |` A) -> (F |` A) @ a e. Ran (F |` A) |
9 |
|
resisf |
isfun F -> isfun (F |` A) |
10 |
|
hyp h1 |
G -> isfun F |
11 |
9, 10 |
syl |
G -> isfun (F |` A) |
12 |
|
eleq2 |
Dom (F |` A) == Dom F i^i A -> (a e. Dom (F |` A) <-> a e. Dom F i^i A) |
13 |
|
dmres |
Dom (F |` A) == Dom F i^i A |
14 |
12, 13 |
ax_mp |
a e. Dom (F |` A) <-> a e. Dom F i^i A |
15 |
|
elin |
a e. Dom F i^i A <-> a e. Dom F /\ a e. A |
16 |
|
hyp h2 |
G -> a e. Dom F |
17 |
16, 5 |
iand |
G -> a e. Dom F /\ a e. A |
18 |
15, 17 |
sylibr |
G -> a e. Dom F i^i A |
19 |
14, 18 |
sylibr |
G -> a e. Dom (F |` A) |
20 |
8, 11, 19 |
sylc |
G -> (F |` A) @ a e. Ran (F |` A) |
21 |
7, 20 |
mpbid |
G -> F @ a e. Ran (F |` A) |
22 |
3, 21 |
sylib |
G -> F @ a e. F '' A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)