Theorem appelima | index | src |

theorem appelima (A F: set) (G: wff) (a: nat):
  $ G -> isfun F $ >
  $ G -> a e. Dom F $ >
  $ G -> a e. A $ >
  $ G -> F @ a e. F '' A $;
StepHypRefExpression
1 eleq2
Ran (F |` A) == F '' A -> (F @ a e. Ran (F |` A) <-> F @ a e. F '' A)
2 rnres
Ran (F |` A) == F '' A
3 1, 2 ax_mp
F @ a e. Ran (F |` A) <-> F @ a e. F '' A
4 resapp
a e. A -> (F |` A) @ a = F @ a
5 hyp h3
G -> a e. A
6 4, 5 syl
G -> (F |` A) @ a = F @ a
7 6 eleq1d
G -> ((F |` A) @ a e. Ran (F |` A) <-> F @ a e. Ran (F |` A))
8 appelrn
isfun (F |` A) -> a e. Dom (F |` A) -> (F |` A) @ a e. Ran (F |` A)
9 resisf
isfun F -> isfun (F |` A)
10 hyp h1
G -> isfun F
11 9, 10 syl
G -> isfun (F |` A)
12 eleq2
Dom (F |` A) == Dom F i^i A -> (a e. Dom (F |` A) <-> a e. Dom F i^i A)
13 dmres
Dom (F |` A) == Dom F i^i A
14 12, 13 ax_mp
a e. Dom (F |` A) <-> a e. Dom F i^i A
15 elin
a e. Dom F i^i A <-> a e. Dom F /\ a e. A
16 hyp h2
G -> a e. Dom F
17 16, 5 iand
G -> a e. Dom F /\ a e. A
18 15, 17 sylibr
G -> a e. Dom F i^i A
19 14, 18 sylibr
G -> a e. Dom (F |` A)
20 8, 11, 19 sylc
G -> (F |` A) @ a e. Ran (F |` A)
21 7, 20 mpbid
G -> F @ a e. Ran (F |` A)
22 3, 21 sylib
G -> F @ a e. F '' A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)