Step | Hyp | Ref | Expression |
1 |
|
lamisf |
isfun (\ x, a) |
2 |
1 |
a1i |
T. -> isfun (\ x, a) |
3 |
|
nfv |
F/ z p = x, a |
4 |
|
nfnv |
FN/ x z |
5 |
|
nfsbn1 |
FN/ x N[z / x] a |
6 |
4, 5 |
nfpr |
FN/ x z, N[z / x] a |
7 |
6 |
nfeq2 |
F/ x p = z, N[z / x] a |
8 |
|
id |
x = z -> x = z |
9 |
|
sbnq |
x = z -> a = N[z / x] a |
10 |
8, 9 |
preqd |
x = z -> x, a = z, N[z / x] a |
11 |
10 |
eqeq2d |
x = z -> (p = x, a <-> p = z, N[z / x] a) |
12 |
3, 7, 11 |
cbvexh |
E. x p = x, a <-> E. z p = z, N[z / x] a |
13 |
|
eqeq1 |
p = b, N[b / x] a -> (p = z, N[z / x] a <-> b, N[b / x] a = z, N[z / x] a) |
14 |
13 |
exeqd |
p = b, N[b / x] a -> (E. z p = z, N[z / x] a <-> E. z b, N[b / x] a = z, N[z / x] a) |
15 |
12, 14 |
syl5bb |
p = b, N[b / x] a -> (E. x p = x, a <-> E. z b, N[b / x] a = z, N[z / x] a) |
16 |
15 |
elabe |
b, N[b / x] a e. {p | E. x p = x, a} <-> E. z b, N[b / x] a = z, N[z / x] a |
17 |
16 |
conv lam |
b, N[b / x] a e. \ x, a <-> E. z b, N[b / x] a = z, N[z / x] a |
18 |
|
id |
z = b -> z = b |
19 |
|
sbneq1 |
z = b -> N[z / x] a = N[b / x] a |
20 |
18, 19 |
preqd |
z = b -> z, N[z / x] a = b, N[b / x] a |
21 |
20 |
eqeq2d |
z = b -> (b, N[b / x] a = z, N[z / x] a <-> b, N[b / x] a = b, N[b / x] a) |
22 |
21 |
iexe |
b, N[b / x] a = b, N[b / x] a -> E. z b, N[b / x] a = z, N[z / x] a |
23 |
|
eqid |
b, N[b / x] a = b, N[b / x] a |
24 |
22, 23 |
ax_mp |
E. z b, N[b / x] a = z, N[z / x] a |
25 |
17, 24 |
mpbir |
b, N[b / x] a e. \ x, a |
26 |
25 |
a1i |
T. -> b, N[b / x] a e. \ x, a |
27 |
2, 26 |
isfappd |
T. -> (\ x, a) @ b = N[b / x] a |
28 |
27 |
trud |
(\ x, a) @ b = N[b / x] a |