Step | Hyp | Ref | Expression |
1 |
|
ellam |
u, v e. \ x, a <-> E. x u, v = x, a |
2 |
|
nflam1 |
FS/ x \ x, a |
3 |
2 |
nfel2 |
F/ x u, w e. \ x, a |
4 |
|
nfv |
F/ x v = w |
5 |
3, 4 |
nfim |
F/ x u, w e. \ x, a -> v = w |
6 |
|
prth |
u, v = x, a <-> u = x /\ v = a |
7 |
|
bitr |
(u, w e. \ x, a <-> E. x u, w = x, a) -> (E. x u, w = x, a <-> E. y u, w = y, N[y / x] a) -> (u, w e. \ x, a <-> E. y u, w = y, N[y / x] a) |
8 |
|
ellam |
u, w e. \ x, a <-> E. x u, w = x, a |
9 |
7, 8 |
ax_mp |
(E. x u, w = x, a <-> E. y u, w = y, N[y / x] a) -> (u, w e. \ x, a <-> E. y u, w = y, N[y / x] a) |
10 |
|
nfv |
F/ y u, w = x, a |
11 |
|
nfnv |
FN/ x y |
12 |
|
nfsbn1 |
FN/ x N[y / x] a |
13 |
11, 12 |
nfpr |
FN/ x y, N[y / x] a |
14 |
13 |
nfeq2 |
F/ x u, w = y, N[y / x] a |
15 |
|
id |
x = y -> x = y |
16 |
|
sbnq |
x = y -> a = N[y / x] a |
17 |
15, 16 |
preqd |
x = y -> x, a = y, N[y / x] a |
18 |
17 |
eqeq2d |
x = y -> (u, w = x, a <-> u, w = y, N[y / x] a) |
19 |
10, 14, 18 |
cbvexh |
E. x u, w = x, a <-> E. y u, w = y, N[y / x] a |
20 |
9, 19 |
ax_mp |
u, w e. \ x, a <-> E. y u, w = y, N[y / x] a |
21 |
|
prth |
u, w = y, N[y / x] a <-> u = y /\ w = N[y / x] a |
22 |
|
anlr |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> v = a |
23 |
|
anrr |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> w = N[y / x] a |
24 |
|
anll |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> u = x |
25 |
|
anrl |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> u = y |
26 |
24, 25 |
eqtr3d |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> x = y |
27 |
16, 26 |
syl |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> a = N[y / x] a |
28 |
23, 27 |
eqtr4d |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> w = a |
29 |
22, 28 |
eqtr4d |
u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> v = w |
30 |
29 |
exp |
u = x /\ v = a -> u = y /\ w = N[y / x] a -> v = w |
31 |
21, 30 |
syl5bi |
u = x /\ v = a -> u, w = y, N[y / x] a -> v = w |
32 |
31 |
eexd |
u = x /\ v = a -> E. y u, w = y, N[y / x] a -> v = w |
33 |
20, 32 |
syl5bi |
u = x /\ v = a -> u, w e. \ x, a -> v = w |
34 |
6, 33 |
sylbi |
u, v = x, a -> u, w e. \ x, a -> v = w |
35 |
5, 34 |
eexh |
E. x u, v = x, a -> u, w e. \ x, a -> v = w |
36 |
1, 35 |
sylbi |
u, v e. \ x, a -> u, w e. \ x, a -> v = w |
37 |
36 |
ax_gen |
A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w) |
38 |
37 |
ax_gen |
A. v A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w) |
39 |
38 |
ax_gen |
A. u A. v A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w) |
40 |
39 |
conv isfun |
isfun (\ x, a) |