| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ellam | 
          u, v e. \ x, a <-> E. x u, v = x, a  | 
        
        
          | 2 | 
           | 
          nflam1 | 
          FS/ x \ x, a  | 
        
        
          | 3 | 
          2 | 
          nfel2 | 
          F/ x u, w e. \ x, a  | 
        
        
          | 4 | 
           | 
          nfv | 
          F/ x v = w  | 
        
        
          | 5 | 
          3, 4 | 
          nfim | 
          F/ x u, w e. \ x, a -> v = w  | 
        
        
          | 6 | 
           | 
          prth | 
          u, v = x, a <-> u = x /\ v = a  | 
        
        
          | 7 | 
           | 
          bitr | 
          (u, w e. \ x, a <-> E. x u, w = x, a) -> (E. x u, w = x, a <-> E. y u, w = y, N[y / x] a) -> (u, w e. \ x, a <-> E. y u, w = y, N[y / x] a)  | 
        
        
          | 8 | 
           | 
          ellam | 
          u, w e. \ x, a <-> E. x u, w = x, a  | 
        
        
          | 9 | 
          7, 8 | 
          ax_mp | 
          (E. x u, w = x, a <-> E. y u, w = y, N[y / x] a) -> (u, w e. \ x, a <-> E. y u, w = y, N[y / x] a)  | 
        
        
          | 10 | 
           | 
          nfv | 
          F/ y u, w = x, a  | 
        
        
          | 11 | 
           | 
          nfnv | 
          FN/ x y  | 
        
        
          | 12 | 
           | 
          nfsbn1 | 
          FN/ x N[y / x] a  | 
        
        
          | 13 | 
          11, 12 | 
          nfpr | 
          FN/ x y, N[y / x] a  | 
        
        
          | 14 | 
          13 | 
          nfeq2 | 
          F/ x u, w = y, N[y / x] a  | 
        
        
          | 15 | 
           | 
          id | 
          x = y -> x = y  | 
        
        
          | 16 | 
           | 
          sbnq | 
          x = y -> a = N[y / x] a  | 
        
        
          | 17 | 
          15, 16 | 
          preqd | 
          x = y -> x, a = y, N[y / x] a  | 
        
        
          | 18 | 
          17 | 
          eqeq2d | 
          x = y -> (u, w = x, a <-> u, w = y, N[y / x] a)  | 
        
        
          | 19 | 
          10, 14, 18 | 
          cbvexh | 
          E. x u, w = x, a <-> E. y u, w = y, N[y / x] a  | 
        
        
          | 20 | 
          9, 19 | 
          ax_mp | 
          u, w e. \ x, a <-> E. y u, w = y, N[y / x] a  | 
        
        
          | 21 | 
           | 
          prth | 
          u, w = y, N[y / x] a <-> u = y /\ w = N[y / x] a  | 
        
        
          | 22 | 
           | 
          anlr | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> v = a  | 
        
        
          | 23 | 
           | 
          anrr | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> w = N[y / x] a  | 
        
        
          | 24 | 
           | 
          anll | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> u = x  | 
        
        
          | 25 | 
           | 
          anrl | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> u = y  | 
        
        
          | 26 | 
          24, 25 | 
          eqtr3d | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> x = y  | 
        
        
          | 27 | 
          16, 26 | 
          syl | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> a = N[y / x] a  | 
        
        
          | 28 | 
          23, 27 | 
          eqtr4d | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> w = a  | 
        
        
          | 29 | 
          22, 28 | 
          eqtr4d | 
          u = x /\ v = a /\ (u = y /\ w = N[y / x] a) -> v = w  | 
        
        
          | 30 | 
          29 | 
          exp | 
          u = x /\ v = a -> u = y /\ w = N[y / x] a -> v = w  | 
        
        
          | 31 | 
          21, 30 | 
          syl5bi | 
          u = x /\ v = a -> u, w = y, N[y / x] a -> v = w  | 
        
        
          | 32 | 
          31 | 
          eexd | 
          u = x /\ v = a -> E. y u, w = y, N[y / x] a -> v = w  | 
        
        
          | 33 | 
          20, 32 | 
          syl5bi | 
          u = x /\ v = a -> u, w e. \ x, a -> v = w  | 
        
        
          | 34 | 
          6, 33 | 
          sylbi | 
          u, v = x, a -> u, w e. \ x, a -> v = w  | 
        
        
          | 35 | 
          5, 34 | 
          eexh | 
          E. x u, v = x, a -> u, w e. \ x, a -> v = w  | 
        
        
          | 36 | 
          1, 35 | 
          sylbi | 
          u, v e. \ x, a -> u, w e. \ x, a -> v = w  | 
        
        
          | 37 | 
          36 | 
          ax_gen | 
          A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w)  | 
        
        
          | 38 | 
          37 | 
          ax_gen | 
          A. v A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w)  | 
        
        
          | 39 | 
          38 | 
          ax_gen | 
          A. u A. v A. w (u, v e. \ x, a -> u, w e. \ x, a -> v = w)  | 
        
        
          | 40 | 
          39 | 
          conv isfun | 
          isfun (\ x, a)  |