Theorem cbvlamd | index | src |

theorem cbvlamd {x y: nat} (G: wff) (a: nat x) (b: nat y):
  $ G /\ x = y -> a = b $ >
  $ G -> \ x, a == \ y, b $;
StepHypRefExpression
1 cbvlams
\ x, a == \ y, N[y / x] a
2 1 a1i
G -> \ x, a == \ y, N[y / x] a
3 sbnet
A. x (x = y -> a = b) -> N[y / x] a = b
4 hyp h
G /\ x = y -> a = b
5 4 ialda
G -> A. x (x = y -> a = b)
6 3, 5 syl
G -> N[y / x] a = b
7 6 lameqd
G -> \ y, N[y / x] a == \ y, b
8 2, 7 eqstrd
G -> \ x, a == \ y, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)