Theorem lameqd | index | src |

theorem lameqd (_G: wff) {x: nat} (_a1 _a2: nat x):
  $ _G -> _a1 = _a2 $ >
  $ _G -> \ x, _a1 == \ x, _a2 $;
StepHypRefExpression
1 eqidd
_G -> p = p
2 eqidd
_G -> x = x
3 hyp _ah
_G -> _a1 = _a2
4 2, 3 preqd
_G -> x, _a1 = x, _a2
5 1, 4 eqeqd
_G -> (p = x, _a1 <-> p = x, _a2)
6 5 exeqd
_G -> (E. x p = x, _a1 <-> E. x p = x, _a2)
7 6 abeqd
_G -> {p | E. x p = x, _a1} == {p | E. x p = x, _a2}
8 7 conv lam
_G -> \ x, _a1 == \ x, _a2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)