Theorem resres | index | src |

theorem resres (A B F: set): $ F |` A |` B == F |` A i^i B $;
StepHypRefExpression
1 eqstr4
F |` A |` B == F i^i (Xp A _V i^i Xp B _V) -> F |` A i^i B == F i^i (Xp A _V i^i Xp B _V) -> F |` A |` B == F |` A i^i B
2 inass
F i^i Xp A _V i^i Xp B _V == F i^i (Xp A _V i^i Xp B _V)
3 2 conv res
F |` A |` B == F i^i (Xp A _V i^i Xp B _V)
4 1, 3 ax_mp
F |` A i^i B == F i^i (Xp A _V i^i Xp B _V) -> F |` A |` B == F |` A i^i B
5 ineq2
Xp (A i^i B) _V == Xp A _V i^i Xp B _V -> F i^i Xp (A i^i B) _V == F i^i (Xp A _V i^i Xp B _V)
6 5 conv res
Xp (A i^i B) _V == Xp A _V i^i Xp B _V -> F |` A i^i B == F i^i (Xp A _V i^i Xp B _V)
7 xpindi
Xp (A i^i B) _V == Xp A _V i^i Xp B _V
8 6, 7 ax_mp
F |` A i^i B == F i^i (Xp A _V i^i Xp B _V)
9 4, 8 ax_mp
F |` A |` B == F |` A i^i B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)