Theorem ellam | index | src |

theorem ellam (p: nat) {x: nat} (a: nat x): $ p e. \ x, a <-> E. x p = x, a $;
StepHypRefExpression
1 eqeq1
q = p -> (q = x, a <-> p = x, a)
2 1 exeqd
q = p -> (E. x q = x, a <-> E. x p = x, a)
3 2 elabe
p e. {q | E. x q = x, a} <-> E. x p = x, a
4 3 conv lam
p e. \ x, a <-> E. x p = x, a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)