Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a, b e. \ x, v <-> E. x a, b = x, v) -> (E. x a, b = x, v <-> b = N[a / x] v) -> (a, b e. \ x, v <-> b = N[a / x] v) |
2 |
|
ellam |
a, b e. \ x, v <-> E. x a, b = x, v |
3 |
1, 2 |
ax_mp |
(E. x a, b = x, v <-> b = N[a / x] v) -> (a, b e. \ x, v <-> b = N[a / x] v) |
4 |
|
bitr |
(E. x a, b = x, v <-> E. x (x = a /\ b = v)) -> (E. x (x = a /\ b = v) <-> b = N[a / x] v) -> (E. x a, b = x, v <-> b = N[a / x] v) |
5 |
|
bitr |
(a, b = x, v <-> a = x /\ b = v) -> (a = x /\ b = v <-> x = a /\ b = v) -> (a, b = x, v <-> x = a /\ b = v) |
6 |
|
prth |
a, b = x, v <-> a = x /\ b = v |
7 |
5, 6 |
ax_mp |
(a = x /\ b = v <-> x = a /\ b = v) -> (a, b = x, v <-> x = a /\ b = v) |
8 |
|
eqcomb |
a = x <-> x = a |
9 |
8 |
aneq1i |
a = x /\ b = v <-> x = a /\ b = v |
10 |
7, 9 |
ax_mp |
a, b = x, v <-> x = a /\ b = v |
11 |
10 |
exeqi |
E. x a, b = x, v <-> E. x (x = a /\ b = v) |
12 |
4, 11 |
ax_mp |
(E. x (x = a /\ b = v) <-> b = N[a / x] v) -> (E. x a, b = x, v <-> b = N[a / x] v) |
13 |
|
bitr3 |
([a / x] b = v <-> E. x (x = a /\ b = v)) -> ([a / x] b = v <-> b = N[a / x] v) -> (E. x (x = a /\ b = v) <-> b = N[a / x] v) |
14 |
|
dfsb3 |
[a / x] b = v <-> E. x (x = a /\ b = v) |
15 |
13, 14 |
ax_mp |
([a / x] b = v <-> b = N[a / x] v) -> (E. x (x = a /\ b = v) <-> b = N[a / x] v) |
16 |
|
nfnv |
FN/ x b |
17 |
|
nfsbn1 |
FN/ x N[a / x] v |
18 |
16, 17 |
nf_eq |
F/ x b = N[a / x] v |
19 |
|
sbnq |
x = a -> v = N[a / x] v |
20 |
19 |
eqeq2d |
x = a -> (b = v <-> b = N[a / x] v) |
21 |
18, 20 |
sbeh |
[a / x] b = v <-> b = N[a / x] v |
22 |
15, 21 |
ax_mp |
E. x (x = a /\ b = v) <-> b = N[a / x] v |
23 |
12, 22 |
ax_mp |
E. x a, b = x, v <-> b = N[a / x] v |
24 |
3, 23 |
ax_mp |
a, b e. \ x, v <-> b = N[a / x] v |