Theorem prellame | index | src |

theorem prellame (b: nat) {x: nat} (y z: nat) (a: nat x):
  $ x = y -> a = b $ >
  $ y, z e. \ x, a <-> z = b $;
StepHypRefExpression
1 bitr
(y, z e. \ x, a <-> z = N[y / x] a) -> (z = N[y / x] a <-> z = b) -> (y, z e. \ x, a <-> z = b)
2 prellams
y, z e. \ x, a <-> z = N[y / x] a
3 1, 2 ax_mp
(z = N[y / x] a <-> z = b) -> (y, z e. \ x, a <-> z = b)
4 eqeq2
N[y / x] a = b -> (z = N[y / x] a <-> z = b)
5 hyp h
x = y -> a = b
6 5 sbne
N[y / x] a = b
7 4, 6 ax_mp
z = N[y / x] a <-> z = b
8 3, 7 ax_mp
y, z e. \ x, a <-> z = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)