theorem prellame (b: nat) {x: nat} (y z: nat) (a: nat x):
  $ x = y -> a = b $ >
  $ y, z e. \ x, a <-> z = b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (y, z e. \ x, a <-> z = N[y / x] a) -> (z = N[y / x] a <-> z = b) -> (y, z e. \ x, a <-> z = b) | 
        
          | 2 |  | prellams | y, z e. \ x, a <-> z = N[y / x] a | 
        
          | 3 | 1, 2 | ax_mp | (z = N[y / x] a <-> z = b) -> (y, z e. \ x, a <-> z = b) | 
        
          | 4 |  | eqeq2 | N[y / x] a = b -> (z = N[y / x] a <-> z = b) | 
        
          | 5 |  | hyp h | x = y -> a = b | 
        
          | 6 | 5 | sbne | N[y / x] a = b | 
        
          | 7 | 4, 6 | ax_mp | z = N[y / x] a <-> z = b | 
        
          | 8 | 3, 7 | ax_mp | y, z e. \ x, a <-> z = b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)