theorem lameq {x: nat} (a b: nat x): $ A. x a = b -> \ x, a == \ x, b $;
Step | Hyp | Ref | Expression |
1 |
|
abeqb |
A. p (E. x p = x, a <-> E. x p = x, b) <-> {p | E. x p = x, a} == {p | E. x p = x, b} |
2 |
1 |
conv lam |
A. p (E. x p = x, a <-> E. x p = x, b) <-> \ x, a == \ x, b |
3 |
|
exeq |
A. x (p = x, a <-> p = x, b) -> (E. x p = x, a <-> E. x p = x, b) |
4 |
|
preq2 |
a = b -> x, a = x, b |
5 |
4 |
eqeq2d |
a = b -> (p = x, a <-> p = x, b) |
6 |
5 |
alimi |
A. x a = b -> A. x (p = x, a <-> p = x, b) |
7 |
3, 6 |
syl |
A. x a = b -> (E. x p = x, a <-> E. x p = x, b) |
8 |
7 |
iald |
A. x a = b -> A. p (E. x p = x, a <-> E. x p = x, b) |
9 |
2, 8 |
sylib |
A. x a = b -> \ x, a == \ x, b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)