Theorem lameq | index | src |

theorem lameq {x: nat} (a b: nat x): $ A. x a = b -> \ x, a == \ x, b $;
StepHypRefExpression
1 abeqb
A. p (E. x p = x, a <-> E. x p = x, b) <-> {p | E. x p = x, a} == {p | E. x p = x, b}
2 1 conv lam
A. p (E. x p = x, a <-> E. x p = x, b) <-> \ x, a == \ x, b
3 exeq
A. x (p = x, a <-> p = x, b) -> (E. x p = x, a <-> E. x p = x, b)
4 preq2
a = b -> x, a = x, b
5 4 eqeq2d
a = b -> (p = x, a <-> p = x, b)
6 5 alimi
A. x a = b -> A. x (p = x, a <-> p = x, b)
7 3, 6 syl
A. x a = b -> (E. x p = x, a <-> E. x p = x, b)
8 7 iald
A. x a = b -> A. p (E. x p = x, a <-> E. x p = x, b)
9 2, 8 sylib
A. x a = b -> \ x, a == \ x, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)