Theorem abeqb | index | src |

theorem abeqb {x: nat} (p q: wff x): $ A. x (p <-> q) <-> {x | p} == {x | q} $;
StepHypRefExpression
1 abeq
A. x (p <-> q) -> {x | p} == {x | q}
2 nfab1
FS/ x {x | p}
3 nfab1
FS/ x {x | q}
4 2, 3 nfeqs
F/ x {x | p} == {x | q}
5 bieq
(x e. {x | p} <-> p) -> (x e. {x | q} <-> q) -> (x e. {x | p} <-> x e. {x | q} <-> (p <-> q))
6 abid
x e. {x | p} <-> p
7 5, 6 ax_mp
(x e. {x | q} <-> q) -> (x e. {x | p} <-> x e. {x | q} <-> (p <-> q))
8 abid
x e. {x | q} <-> q
9 7, 8 ax_mp
x e. {x | p} <-> x e. {x | q} <-> (p <-> q)
10 eleq2
{x | p} == {x | q} -> (x e. {x | p} <-> x e. {x | q})
11 9, 10 sylib
{x | p} == {x | q} -> (p <-> q)
12 4, 11 ialdh
{x | p} == {x | q} -> A. x (p <-> q)
13 1, 12 ibii
A. x (p <-> q) <-> {x | p} == {x | q}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)