theorem abeqb {x: nat} (p q: wff x): $ A. x (p <-> q) <-> {x | p} == {x | q} $;
Step | Hyp | Ref | Expression |
1 |
|
abeq |
A. x (p <-> q) -> {x | p} == {x | q} |
2 |
|
nfab1 |
FS/ x {x | p} |
3 |
|
nfab1 |
FS/ x {x | q} |
4 |
2, 3 |
nfeqs |
F/ x {x | p} == {x | q} |
5 |
|
bieq |
(x e. {x | p} <-> p) -> (x e. {x | q} <-> q) -> (x e. {x | p} <-> x e. {x | q} <-> (p <-> q)) |
6 |
|
abid |
x e. {x | p} <-> p |
7 |
5, 6 |
ax_mp |
(x e. {x | q} <-> q) -> (x e. {x | p} <-> x e. {x | q} <-> (p <-> q)) |
8 |
|
abid |
x e. {x | q} <-> q |
9 |
7, 8 |
ax_mp |
x e. {x | p} <-> x e. {x | q} <-> (p <-> q) |
10 |
|
eleq2 |
{x | p} == {x | q} -> (x e. {x | p} <-> x e. {x | q}) |
11 |
9, 10 |
sylib |
{x | p} == {x | q} -> (p <-> q) |
12 |
4, 11 |
ialdh |
{x | p} == {x | q} -> A. x (p <-> q) |
13 |
1, 12 |
ibii |
A. x (p <-> q) <-> {x | p} == {x | q} |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)