Theorem abid | index | src |

theorem abid {x: nat} (p: wff x): $ x e. {x | p} <-> p $;
StepHypRefExpression
1 bitr
(x e. {x | p} <-> [x / x] p) -> ([x / x] p <-> p) -> (x e. {x | p} <-> p)
2 elab2
x e. {x | p} <-> [x / x] p
3 1, 2 ax_mp
([x / x] p <-> p) -> (x e. {x | p} <-> p)
4 sbid
[x / x] p <-> p
5 3, 4 ax_mp
x e. {x | p} <-> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)