theorem ssabeled (A: set) (G: wff) {x: nat} (a: nat) (p: wff x) (q: wff):
$ G /\ x = a -> p -> q /\ x e. A $ >
$ G -> a e. {x | p} -> q /\ a e. A $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
G /\ x = a -> p -> q /\ x e. A |
2 |
|
anr |
G /\ x = a -> x = a |
3 |
2 |
eleq1d |
G /\ x = a -> (x e. A <-> a e. A) |
4 |
3 |
aneq2d |
G /\ x = a -> (q /\ x e. A <-> q /\ a e. A) |
5 |
4 |
bi1d |
G /\ x = a -> q /\ x e. A -> q /\ a e. A |
6 |
1, 5 |
syld |
G /\ x = a -> p -> q /\ a e. A |
7 |
6 |
ssabed |
G -> a e. {x | p} -> q /\ a e. A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)