Theorem eelabd | index | src |

theorem eelabd (G: wff) {x: nat} (a: nat x) (p: wff x) (q: wff):
  $ G -> p -> q $ >
  $ G -> a e. {x | p} -> q $;
StepHypRefExpression
1 eleq1
y = a -> (y e. {x | p} <-> a e. {x | p})
2 1 iexe
a e. {x | p} -> E. y y e. {x | p}
3 hyp h
G -> p -> q
4 3 anwl
G /\ x = y -> p -> q
5 4 ssabed
G -> y e. {x | p} -> q
6 5 eexd
G -> E. y y e. {x | p} -> q
7 2, 6 syl5
G -> a e. {x | p} -> q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)