theorem ssabed (G: wff) {x: nat} (a: nat) (p: wff x) (q: wff):
$ G /\ x = a -> p -> q $ >
$ G -> a e. {x | p} -> q $;
Step | Hyp | Ref | Expression |
1 |
|
elab2 |
a e. {x | p} <-> [a / x] p |
2 |
|
ax_6 |
E. x x = a |
3 |
|
nfv |
F/ x G |
4 |
|
nfsb1 |
F/ x [a / x] p |
5 |
|
nfv |
F/ x q |
6 |
4, 5 |
nfim |
F/ x [a / x] p -> q |
7 |
|
sbq |
x = a -> (p <-> [a / x] p) |
8 |
7 |
anwr |
G /\ x = a -> (p <-> [a / x] p) |
9 |
8 |
bi2d |
G /\ x = a -> [a / x] p -> p |
10 |
|
hyp h |
G /\ x = a -> p -> q |
11 |
9, 10 |
syld |
G /\ x = a -> [a / x] p -> q |
12 |
11 |
exp |
G -> x = a -> [a / x] p -> q |
13 |
3, 6, 12 |
eexdh |
G -> E. x x = a -> [a / x] p -> q |
14 |
2, 13 |
mpi |
G -> [a / x] p -> q |
15 |
1, 14 |
syl5bi |
G -> a e. {x | p} -> q |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)