theorem eqab2d (A: set) (G: wff) {x: nat} (p: wff x):
$ G -> (x e. A <-> p) $ >
$ G -> A == {x | p} $;
Step | Hyp | Ref | Expression |
1 |
|
nfv |
F/ y x e. A <-> p |
2 |
|
nfv |
F/ x y e. A |
3 |
|
nfab1 |
FS/ x {x | p} |
4 |
3 |
nfel2 |
F/ x y e. {x | p} |
5 |
2, 4 |
nfbi |
F/ x y e. A <-> y e. {x | p} |
6 |
|
eleq1 |
x = y -> (x e. A <-> y e. A) |
7 |
|
abid |
x e. {x | p} <-> p |
8 |
|
eleq1 |
x = y -> (x e. {x | p} <-> y e. {x | p}) |
9 |
7, 8 |
syl5bbr |
x = y -> (p <-> y e. {x | p}) |
10 |
6, 9 |
bieqd |
x = y -> (x e. A <-> p <-> (y e. A <-> y e. {x | p})) |
11 |
1, 5, 10 |
cbvalh |
A. x (x e. A <-> p) <-> A. y (y e. A <-> y e. {x | p}) |
12 |
11 |
conv eqs |
A. x (x e. A <-> p) <-> A == {x | p} |
13 |
|
hyp h |
G -> (x e. A <-> p) |
14 |
13 |
iald |
G -> A. x (x e. A <-> p) |
15 |
12, 14 |
sylib |
G -> A == {x | p} |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)