Theorem eqab2d | index | src |

theorem eqab2d (A: set) (G: wff) {x: nat} (p: wff x):
  $ G -> (x e. A <-> p) $ >
  $ G -> A == {x | p} $;
StepHypRefExpression
1 nfv
F/ y x e. A <-> p
2 nfv
F/ x y e. A
3 nfab1
FS/ x {x | p}
4 3 nfel2
F/ x y e. {x | p}
5 2, 4 nfbi
F/ x y e. A <-> y e. {x | p}
6 eleq1
x = y -> (x e. A <-> y e. A)
7 abid
x e. {x | p} <-> p
8 eleq1
x = y -> (x e. {x | p} <-> y e. {x | p})
9 7, 8 syl5bbr
x = y -> (p <-> y e. {x | p})
10 6, 9 bieqd
x = y -> (x e. A <-> p <-> (y e. A <-> y e. {x | p}))
11 1, 5, 10 cbvalh
A. x (x e. A <-> p) <-> A. y (y e. A <-> y e. {x | p})
12 11 conv eqs
A. x (x e. A <-> p) <-> A == {x | p}
13 hyp h
G -> (x e. A <-> p)
14 13 iald
G -> A. x (x e. A <-> p)
15 12, 14 sylib
G -> A == {x | p}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)