Theorem lameqi | index | src |

theorem lameqi {x: nat} (a b: nat x): $ a = b $ > $ \ x, a == \ x, b $;
StepHypRefExpression
1 lameq
A. x a = b -> \ x, a == \ x, b
2 hyp h
a = b
3 2 ax_gen
A. x a = b
4 1, 3 ax_mp
\ x, a == \ x, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)