Theorem sbnq | index | src |

theorem sbnq {x: nat} (a: nat) (b: nat x): $ x = a -> b = N[a / x] b $;
StepHypRefExpression
1 sbq
x = a -> (y = b <-> [a / x] y = b)
2 1 bicomd
x = a -> ([a / x] y = b <-> y = b)
3 2 eqtheabd
x = a -> the {y | [a / x] y = b} = b
4 3 conv sbn
x = a -> N[a / x] b = b
5 4 eqcomd
x = a -> b = N[a / x] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)