Theorem nfsbn1h | index | src |

theorem nfsbn1h {x: nat} (a b: nat x): $ FN/ x a $ > $ FN/ x N[a / x] b $;
StepHypRefExpression
1 hyp h
FN/ x a
2 1 nfsb1h
F/ x [a / x] y = b
3 2 nfab
FS/ x {y | [a / x] y = b}
4 3 nfthe
FN/ x the {y | [a / x] y = b}
5 4 conv sbn
FN/ x N[a / x] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)