Theorem nfsb1h | index | src |

theorem nfsb1h {x: nat} (a: nat x) (b: wff x): $ FN/ x a $ > $ F/ x [a / x] b $;
StepHypRefExpression
1 hyp h
FN/ x a
2 1 nfeq2
F/ x z = a
3 nfal1
F/ x A. x (x = z -> b)
4 2, 3 nfim
F/ x z = a -> A. x (x = z -> b)
5 4 nfal
F/ x A. z (z = a -> A. x (x = z -> b))
6 5 conv sb
F/ x [a / x] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)