theorem sbneqd (_G: wff) {x: nat} (_a1 _a2 _b1 _b2: nat x):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> N[_a1 / x] _b1 = N[_a2 / x] _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ah |
_G -> _a1 = _a2 |
2 |
|
eqidd |
_G -> y = y |
3 |
|
hyp _bh |
_G -> _b1 = _b2 |
4 |
2, 3 |
eqeqd |
_G -> (y = _b1 <-> y = _b2) |
5 |
1, 4 |
sbeqd |
_G -> ([_a1 / x] y = _b1 <-> [_a2 / x] y = _b2) |
6 |
5 |
abeqd |
_G -> {y | [_a1 / x] y = _b1} == {y | [_a2 / x] y = _b2} |
7 |
6 |
theeqd |
_G -> the {y | [_a1 / x] y = _b1} = the {y | [_a2 / x] y = _b2} |
8 |
7 |
conv sbn |
_G -> N[_a1 / x] _b1 = N[_a2 / x] _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)