Theorem subsntheo | index | src |

theorem subsntheo (A: set) (a: nat): $ subsn A -> (theo A = suc a <-> a e. A) $;
StepHypRefExpression
1 theoid
A == {x | x = a} <-> theo A = suc a
2 eqeq1
x = a -> (x = a <-> a = a)
3 2 elabe
a e. {x | x = a} <-> a = a
4 eqid
a = a
5 3, 4 mpbir
a e. {x | x = a}
6 eleq2
A == {x | x = a} -> (a e. A <-> a e. {x | x = a})
7 5, 6 mpbiri
A == {x | x = a} -> a e. A
8 7 a1i
subsn A -> A == {x | x = a} -> a e. A
9 anll
subsn A /\ a e. A /\ x e. A -> subsn A
10 anr
subsn A /\ a e. A /\ x e. A -> x e. A
11 anlr
subsn A /\ a e. A /\ x e. A -> a e. A
12 9, 10, 11 subsni
subsn A /\ a e. A /\ x e. A -> x = a
13 anr
subsn A /\ a e. A /\ x = a -> x = a
14 13 eleq1d
subsn A /\ a e. A /\ x = a -> (x e. A <-> a e. A)
15 anlr
subsn A /\ a e. A /\ x = a -> a e. A
16 14, 15 mpbird
subsn A /\ a e. A /\ x = a -> x e. A
17 12, 16 ibida
subsn A /\ a e. A -> (x e. A <-> x = a)
18 17 eqab2d
subsn A /\ a e. A -> A == {x | x = a}
19 18 exp
subsn A -> a e. A -> A == {x | x = a}
20 8, 19 ibid
subsn A -> (A == {x | x = a} <-> a e. A)
21 1, 20 syl5bbr
subsn A -> (theo A = suc a <-> a e. A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2)