theorem subsntheo (A: set) (a: nat): $ subsn A -> (theo A = suc a <-> a e. A) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          theoid | 
          A == {x | x = a} <-> theo A = suc a | 
        
        
          | 2 | 
           | 
          eqeq1 | 
          x = a -> (x = a <-> a = a)  | 
        
        
          | 3 | 
          2 | 
          elabe | 
          a e. {x | x = a} <-> a = a | 
        
        
          | 4 | 
           | 
          eqid | 
          a = a  | 
        
        
          | 5 | 
          3, 4 | 
          mpbir | 
          a e. {x | x = a} | 
        
        
          | 6 | 
           | 
          eleq2 | 
          A == {x | x = a} -> (a e. A <-> a e. {x | x = a}) | 
        
        
          | 7 | 
          5, 6 | 
          mpbiri | 
          A == {x | x = a} -> a e. A | 
        
        
          | 8 | 
          7 | 
          a1i | 
          subsn A -> A == {x | x = a} -> a e. A | 
        
        
          | 9 | 
           | 
          anll | 
          subsn A /\ a e. A /\ x e. A -> subsn A  | 
        
        
          | 10 | 
           | 
          anr | 
          subsn A /\ a e. A /\ x e. A -> x e. A  | 
        
        
          | 11 | 
           | 
          anlr | 
          subsn A /\ a e. A /\ x e. A -> a e. A  | 
        
        
          | 12 | 
          9, 10, 11 | 
          subsni | 
          subsn A /\ a e. A /\ x e. A -> x = a  | 
        
        
          | 13 | 
           | 
          anr | 
          subsn A /\ a e. A /\ x = a -> x = a  | 
        
        
          | 14 | 
          13 | 
          eleq1d | 
          subsn A /\ a e. A /\ x = a -> (x e. A <-> a e. A)  | 
        
        
          | 15 | 
           | 
          anlr | 
          subsn A /\ a e. A /\ x = a -> a e. A  | 
        
        
          | 16 | 
          14, 15 | 
          mpbird | 
          subsn A /\ a e. A /\ x = a -> x e. A  | 
        
        
          | 17 | 
          12, 16 | 
          ibida | 
          subsn A /\ a e. A -> (x e. A <-> x = a)  | 
        
        
          | 18 | 
          17 | 
          eqab2d | 
          subsn A /\ a e. A -> A == {x | x = a} | 
        
        
          | 19 | 
          18 | 
          exp | 
          subsn A -> a e. A -> A == {x | x = a} | 
        
        
          | 20 | 
          8, 19 | 
          ibid | 
          subsn A -> (A == {x | x = a} <-> a e. A) | 
        
        
          | 21 | 
          1, 20 | 
          syl5bbr | 
          subsn A -> (theo A = suc a <-> a e. A)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2)