theorem subsntheo (A: set) (a: nat): $ subsn A -> (theo A = suc a <-> a e. A) $;
Step | Hyp | Ref | Expression |
1 |
|
theoid |
A == {x | x = a} <-> theo A = suc a |
2 |
|
eqeq1 |
x = a -> (x = a <-> a = a) |
3 |
2 |
elabe |
a e. {x | x = a} <-> a = a |
4 |
|
eqid |
a = a |
5 |
3, 4 |
mpbir |
a e. {x | x = a} |
6 |
|
eleq2 |
A == {x | x = a} -> (a e. A <-> a e. {x | x = a}) |
7 |
5, 6 |
mpbiri |
A == {x | x = a} -> a e. A |
8 |
7 |
a1i |
subsn A -> A == {x | x = a} -> a e. A |
9 |
|
anll |
subsn A /\ a e. A /\ x e. A -> subsn A |
10 |
|
anr |
subsn A /\ a e. A /\ x e. A -> x e. A |
11 |
|
anlr |
subsn A /\ a e. A /\ x e. A -> a e. A |
12 |
9, 10, 11 |
subsni |
subsn A /\ a e. A /\ x e. A -> x = a |
13 |
|
anr |
subsn A /\ a e. A /\ x = a -> x = a |
14 |
13 |
eleq1d |
subsn A /\ a e. A /\ x = a -> (x e. A <-> a e. A) |
15 |
|
anlr |
subsn A /\ a e. A /\ x = a -> a e. A |
16 |
14, 15 |
mpbird |
subsn A /\ a e. A /\ x = a -> x e. A |
17 |
12, 16 |
ibida |
subsn A /\ a e. A -> (x e. A <-> x = a) |
18 |
17 |
eqab2d |
subsn A /\ a e. A -> A == {x | x = a} |
19 |
18 |
exp |
subsn A -> a e. A -> A == {x | x = a} |
20 |
8, 19 |
ibid |
subsn A -> (A == {x | x = a} <-> a e. A) |
21 |
1, 20 |
syl5bbr |
subsn A -> (theo A = suc a <-> a e. A) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2)