Theorem theoid | index | src |

theorem theoid {x: nat} (A: set) (a: nat):
  $ A == {x | x = a} <-> theo A = suc a $;
StepHypRefExpression
1 theoid1
A == {x | x = a} -> theo A = suc a
2 sucne0
theo A = suc a -> theo A != 0
3 con1
(~E. a1 A == {x | x = a1} -> theo A = 0) -> ~theo A = 0 -> E. a1 A == {x | x = a1}
4 3 conv ne
(~E. a1 A == {x | x = a1} -> theo A = 0) -> theo A != 0 -> E. a1 A == {x | x = a1}
5 theo01
~E. a1 A == {x | x = a1} -> theo A = 0
6 4, 5 ax_mp
theo A != 0 -> E. a1 A == {x | x = a1}
7 2, 6 rsyl
theo A = suc a -> E. a1 A == {x | x = a1}
8 anr
theo A = suc a /\ A == {x | x = a1} -> A == {x | x = a1}
9 eqeq2
a1 = a -> (x = a1 <-> x = a)
10 9 abeqd
a1 = a -> {x | x = a1} == {x | x = a}
11 peano2
suc a1 = suc a <-> a1 = a
12 theoid1
A == {x | x = a1} -> theo A = suc a1
13 12 anwr
theo A = suc a /\ A == {x | x = a1} -> theo A = suc a1
14 anl
theo A = suc a /\ A == {x | x = a1} -> theo A = suc a
15 13, 14 eqtr3d
theo A = suc a /\ A == {x | x = a1} -> suc a1 = suc a
16 11, 15 sylib
theo A = suc a /\ A == {x | x = a1} -> a1 = a
17 10, 16 syl
theo A = suc a /\ A == {x | x = a1} -> {x | x = a1} == {x | x = a}
18 8, 17 eqstrd
theo A = suc a /\ A == {x | x = a1} -> A == {x | x = a}
19 18 eexda
theo A = suc a -> E. a1 A == {x | x = a1} -> A == {x | x = a}
20 7, 19 mpd
theo A = suc a -> A == {x | x = a}
21 1, 20 ibii
A == {x | x = a} <-> theo A = suc a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2)