theorem theoid {x: nat} (A: set) (a: nat):
$ A == {x | x = a} <-> theo A = suc a $;
Step | Hyp | Ref | Expression |
1 |
|
theoid1 |
A == {x | x = a} -> theo A = suc a |
2 |
|
sucne0 |
theo A = suc a -> theo A != 0 |
3 |
|
con1 |
(~E. a1 A == {x | x = a1} -> theo A = 0) -> ~theo A = 0 -> E. a1 A == {x | x = a1} |
4 |
3 |
conv ne |
(~E. a1 A == {x | x = a1} -> theo A = 0) -> theo A != 0 -> E. a1 A == {x | x = a1} |
5 |
|
theo01 |
~E. a1 A == {x | x = a1} -> theo A = 0 |
6 |
4, 5 |
ax_mp |
theo A != 0 -> E. a1 A == {x | x = a1} |
7 |
2, 6 |
rsyl |
theo A = suc a -> E. a1 A == {x | x = a1} |
8 |
|
anr |
theo A = suc a /\ A == {x | x = a1} -> A == {x | x = a1} |
9 |
|
eqeq2 |
a1 = a -> (x = a1 <-> x = a) |
10 |
9 |
abeqd |
a1 = a -> {x | x = a1} == {x | x = a} |
11 |
|
peano2 |
suc a1 = suc a <-> a1 = a |
12 |
|
theoid1 |
A == {x | x = a1} -> theo A = suc a1 |
13 |
12 |
anwr |
theo A = suc a /\ A == {x | x = a1} -> theo A = suc a1 |
14 |
|
anl |
theo A = suc a /\ A == {x | x = a1} -> theo A = suc a |
15 |
13, 14 |
eqtr3d |
theo A = suc a /\ A == {x | x = a1} -> suc a1 = suc a |
16 |
11, 15 |
sylib |
theo A = suc a /\ A == {x | x = a1} -> a1 = a |
17 |
10, 16 |
syl |
theo A = suc a /\ A == {x | x = a1} -> {x | x = a1} == {x | x = a} |
18 |
8, 17 |
eqstrd |
theo A = suc a /\ A == {x | x = a1} -> A == {x | x = a} |
19 |
18 |
eexda |
theo A = suc a -> E. a1 A == {x | x = a1} -> A == {x | x = a} |
20 |
7, 19 |
mpd |
theo A = suc a -> A == {x | x = a} |
21 |
1, 20 |
ibii |
A == {x | x = a} <-> theo A = suc a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2)