theorem subsnex (A: set) {a x: nat}:
$ subsn A <-> E. a A. x (x e. A -> x = a) $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
a = the A -> (x e. A <-> x e. A) |
2 |
|
eqidd |
a = the A -> x = x |
3 |
|
id |
a = the A -> a = the A |
4 |
2, 3 |
eqeqd |
a = the A -> (x = a <-> x = the A) |
5 |
1, 4 |
imeqd |
a = the A -> (x e. A -> x = a <-> x e. A -> x = the A) |
6 |
5 |
aleqd |
a = the A -> (A. x (x e. A -> x = a) <-> A. x (x e. A -> x = the A)) |
7 |
6 |
iexe |
A. x (x e. A -> x = the A) -> E. a A. x (x e. A -> x = a) |
8 |
|
eqcom |
the A = x -> x = the A |
9 |
|
subsnthe |
subsn A -> x e. A -> the A = x |
10 |
8, 9 |
syl6 |
subsn A -> x e. A -> x = the A |
11 |
10 |
iald |
subsn A -> A. x (x e. A -> x = the A) |
12 |
7, 11 |
syl |
subsn A -> E. a A. x (x e. A -> x = a) |
13 |
|
id |
x = a1 -> x = a1 |
14 |
|
eqsidd |
x = a1 -> A == A |
15 |
13, 14 |
eleqd |
x = a1 -> (x e. A <-> a1 e. A) |
16 |
|
eqidd |
x = a1 -> a = a |
17 |
13, 16 |
eqeqd |
x = a1 -> (x = a <-> a1 = a) |
18 |
15, 17 |
imeqd |
x = a1 -> (x e. A -> x = a <-> a1 e. A -> a1 = a) |
19 |
18 |
eale |
A. x (x e. A -> x = a) -> a1 e. A -> a1 = a |
20 |
19 |
eqsubsnd |
A. x (x e. A -> x = a) -> subsn A |
21 |
20 |
eex |
E. a A. x (x e. A -> x = a) -> subsn A |
22 |
12, 21 |
ibii |
subsn A <-> E. a A. x (x e. A -> x = a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid)