Theorem eleqd | index | src |

theorem eleqd (G: wff) (a b: nat) (A B: set):
  $ G -> a = b $ >
  $ G -> A == B $ >
  $ G -> (a e. A <-> b e. B) $;
StepHypRefExpression
1 hyp h1
G -> a = b
2 1 eleq1d
G -> (a e. A <-> b e. A)
3 hyp h2
G -> A == B
4 3 eleq2d
G -> (b e. A <-> b e. B)
5 2, 4 bitrd
G -> (a e. A <-> b e. B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)