theorem eleqd (G: wff) (a b: nat) (A B: set): $ G -> a = b $ > $ G -> A == B $ > $ G -> (a e. A <-> b e. B) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | G -> a = b |
|
2 | 1 | eleq1d | G -> (a e. A <-> b e. A) |
3 | hyp h2 | G -> A == B |
|
4 | 3 | eleq2d | G -> (b e. A <-> b e. B) |
5 | 2, 4 | bitrd | G -> (a e. A <-> b e. B) |