theorem eqsubsnd (A: set) (G: wff) (a: nat) {x: nat}:
  $ G -> x e. A -> x = a $ >
  $ G -> subsn A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | subsnss | A C_ {x | x = a} -> subsn {x | x = a} -> subsn A | 
        
          | 2 |  | ssab2 | A. x (x e. A -> x = a) <-> A C_ {x | x = a} | 
        
          | 3 |  | hyp h | G -> x e. A -> x = a | 
        
          | 4 | 3 | iald | G -> A. x (x e. A -> x = a) | 
        
          | 5 | 2, 4 | sylib | G -> A C_ {x | x = a} | 
        
          | 6 |  | subsnsn2 | subsn {x | x = a} | 
        
          | 7 | 6 | a1i | G -> subsn {x | x = a} | 
        
          | 8 | 1, 5, 7 | sylc | G -> subsn A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)