theorem eqsubsnd (A: set) (G: wff) (a: nat) {x: nat}:
$ G -> x e. A -> x = a $ >
$ G -> subsn A $;
Step | Hyp | Ref | Expression |
1 |
|
subsnss |
A C_ {x | x = a} -> subsn {x | x = a} -> subsn A |
2 |
|
ssab2 |
A. x (x e. A -> x = a) <-> A C_ {x | x = a} |
3 |
|
hyp h |
G -> x e. A -> x = a |
4 |
3 |
iald |
G -> A. x (x e. A -> x = a) |
5 |
2, 4 |
sylib |
G -> A C_ {x | x = a} |
6 |
|
subsnsn2 |
subsn {x | x = a} |
7 |
6 |
a1i |
G -> subsn {x | x = a} |
8 |
1, 5, 7 |
sylc |
G -> subsn A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)