Theorem ssab2 | index | src |

theorem ssab2 (A: set) {x: nat} (p: wff x):
  $ A. x (x e. A -> p) <-> A C_ {x | p} $;
StepHypRefExpression
1 nfv
F/ y x e. A -> p
2 nfv
F/ x y e. A
3 nfab1
FS/ x {x | p}
4 3 nfel2
F/ x y e. {x | p}
5 2, 4 nfim
F/ x y e. A -> y e. {x | p}
6 eleq1
x = y -> (x e. A <-> y e. A)
7 elab
y e. {x | p} <-> [y / x] p
8 sbq
x = y -> (p <-> [y / x] p)
9 7, 8 syl6bbr
x = y -> (p <-> y e. {x | p})
10 6, 9 imeqd
x = y -> (x e. A -> p <-> y e. A -> y e. {x | p})
11 1, 5, 10 cbvalh
A. x (x e. A -> p) <-> A. y (y e. A -> y e. {x | p})
12 11 conv subset
A. x (x e. A -> p) <-> A C_ {x | p}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)