theorem ssab1 (A: set) {x: nat} (p: wff x):
$ A. x (p -> x e. A) <-> {x | p} C_ A $;
Step | Hyp | Ref | Expression |
1 |
|
nfv |
F/ y p -> x e. A |
2 |
|
nfab1 |
FS/ x {x | p} |
3 |
2 |
nfel2 |
F/ x y e. {x | p} |
4 |
|
nfv |
F/ x y e. A |
5 |
3, 4 |
nfim |
F/ x y e. {x | p} -> y e. A |
6 |
|
elab |
y e. {x | p} <-> [y / x] p |
7 |
|
sbq |
x = y -> (p <-> [y / x] p) |
8 |
6, 7 |
syl6bbr |
x = y -> (p <-> y e. {x | p}) |
9 |
|
eleq1 |
x = y -> (x e. A <-> y e. A) |
10 |
8, 9 |
imeqd |
x = y -> (p -> x e. A <-> y e. {x | p} -> y e. A) |
11 |
1, 5, 10 |
cbvalh |
A. x (p -> x e. A) <-> A. y (y e. {x | p} -> y e. A) |
12 |
11 |
conv subset |
A. x (p -> x e. A) <-> {x | p} C_ A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)