theorem ssab1 (A: set) {x: nat} (p: wff x):
  $ A. x (p -> x e. A) <-> {x | p} C_ A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | nfv | F/ y p -> x e. A | 
        
          | 2 |  | nfab1 | FS/ x {x | p} | 
        
          | 3 | 2 | nfel2 | F/ x y e. {x | p} | 
        
          | 4 |  | nfv | F/ x y e. A | 
        
          | 5 | 3, 4 | nfim | F/ x y e. {x | p} -> y e. A | 
        
          | 6 |  | elab | y e. {x | p} <-> [y / x] p | 
        
          | 7 |  | sbq | x = y -> (p <-> [y / x] p) | 
        
          | 8 | 6, 7 | syl6bbr | x = y -> (p <-> y e. {x | p}) | 
        
          | 9 |  | eleq1 | x = y -> (x e. A <-> y e. A) | 
        
          | 10 | 8, 9 | imeqd | x = y -> (p -> x e. A <-> y e. {x | p} -> y e. A) | 
        
          | 11 | 1, 5, 10 | cbvalh | A. x (p -> x e. A) <-> A. y (y e. {x | p} -> y e. A) | 
        
          | 12 | 11 | conv subset | A. x (p -> x e. A) <-> {x | p} C_ A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)