theorem ssabd (G: wff) {x: nat} (p q: wff x): $ G -> p -> q $ > $ G -> {x | p} C_ {x | q} $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssab | A. x (p -> q) <-> {x | p} C_ {x | q} |
|
2 | hyp h | G -> p -> q |
|
3 | 2 | iald | G -> A. x (p -> q) |
4 | 1, 3 | sylib | G -> {x | p} C_ {x | q} |