Theorem ssabd | index | src |

theorem ssabd (G: wff) {x: nat} (p q: wff x):
  $ G -> p -> q $ >
  $ G -> {x | p} C_ {x | q} $;
StepHypRefExpression
1 ssab
A. x (p -> q) <-> {x | p} C_ {x | q}
2 hyp h
G -> p -> q
3 2 iald
G -> A. x (p -> q)
4 1, 3 sylib
G -> {x | p} C_ {x | q}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)