theorem ssabd (G: wff) {x: nat} (p q: wff x):
$ G -> p -> q $ >
$ G -> {x | p} C_ {x | q} $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssab | A. x (p -> q) <-> {x | p} C_ {x | q} |
|
| 2 | hyp h | G -> p -> q |
|
| 3 | 2 | iald | G -> A. x (p -> q) |
| 4 | 1, 3 | sylib | G -> {x | p} C_ {x | q} |