theorem ssab {x: nat} (p q: wff x): $ A. x (p -> q) <-> {x | p} C_ {x | q} $;
| Step | Hyp | Ref | Expression |
| 1 |
|
nfv |
F/ y p -> q |
| 2 |
|
nfab1 |
FS/ x {x | p} |
| 3 |
2 |
nfel2 |
F/ x y e. {x | p} |
| 4 |
|
nfab1 |
FS/ x {x | q} |
| 5 |
4 |
nfel2 |
F/ x y e. {x | q} |
| 6 |
3, 5 |
nfim |
F/ x y e. {x | p} -> y e. {x | q} |
| 7 |
|
elab |
y e. {x | p} <-> [y / x] p |
| 8 |
|
sbq |
x = y -> (p <-> [y / x] p) |
| 9 |
7, 8 |
syl6bbr |
x = y -> (p <-> y e. {x | p}) |
| 10 |
|
elab |
y e. {x | q} <-> [y / x] q |
| 11 |
|
sbq |
x = y -> (q <-> [y / x] q) |
| 12 |
10, 11 |
syl6bbr |
x = y -> (q <-> y e. {x | q}) |
| 13 |
9, 12 |
imeqd |
x = y -> (p -> q <-> y e. {x | p} -> y e. {x | q}) |
| 14 |
1, 6, 13 |
cbvalh |
A. x (p -> q) <-> A. y (y e. {x | p} -> y e. {x | q}) |
| 15 |
14 |
conv subset |
A. x (p -> q) <-> {x | p} C_ {x | q} |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)