Theorem eqab1i | index | src |

theorem eqab1i (A: set) {x: nat} (p: wff x):
  $ p <-> x e. A $ >
  $ {x | p} == A $;
StepHypRefExpression
1 hyp h
p <-> x e. A
2 1 a1i
T. -> (p <-> x e. A)
3 2 eqab1d
T. -> {x | p} == A
4 3 trud
{x | p} == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)