theorem eqab1d (A: set) (G: wff) {x: nat} (p: wff x):
$ G -> (p <-> x e. A) $ >
$ G -> {x | p} == A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | G -> (p <-> x e. A) |
|
| 2 | 1 | bicomd | G -> (x e. A <-> p) |
| 3 | 2 | eqab2d | G -> A == {x | p} |
| 4 | 3 | eqscomd | G -> {x | p} == A |