Theorem elabed1 | index | src |

theorem elabed1 (A: set) (G P: wff) (a: nat) {x: nat} (p: wff x):
  $ G /\ x = a -> (a e. A <-> p) -> P $ >
  $ G -> A == {x | p} -> P $;
StepHypRefExpression
1 ax_6
E. x x = a
2 nfv
F/ x G
3 nfsv
FS/ x A
4 nfab1
FS/ x {x | p}
5 3, 4 nfeqs
F/ x A == {x | p}
6 nfv
F/ x P
7 5, 6 nfim
F/ x A == {x | p} -> P
8 eleq2
A == {x | p} -> (a e. A <-> a e. {x | p})
9 8 bieq1d
A == {x | p} -> (a e. A <-> p <-> (a e. {x | p} <-> p))
10 anr
G /\ x = a -> x = a
11 10 eleq1d
G /\ x = a -> (x e. {x | p} <-> a e. {x | p})
12 abid
x e. {x | p} <-> p
13 12 a1i
G /\ x = a -> (x e. {x | p} <-> p)
14 11, 13 bitr3d
G /\ x = a -> (a e. {x | p} <-> p)
15 9, 14 syl5ibrcom
G /\ x = a -> A == {x | p} -> (a e. A <-> p)
16 hyp e
G /\ x = a -> (a e. A <-> p) -> P
17 15, 16 syld
G /\ x = a -> A == {x | p} -> P
18 17 exp
G -> x = a -> A == {x | p} -> P
19 2, 7, 18 eexdh
G -> E. x x = a -> A == {x | p} -> P
20 1, 19 mpi
G -> A == {x | p} -> P

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)