theorem elabed1 (A: set) (G P: wff) (a: nat) {x: nat} (p: wff x):
  $ G /\ x = a -> (a e. A <-> p) -> P $ >
  $ G -> A == {x | p} -> P $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ax_6 | E. x x = a | 
        
          | 2 |  | nfv | F/ x G | 
        
          | 3 |  | nfsv | FS/ x A | 
        
          | 4 |  | nfab1 | FS/ x {x | p} | 
        
          | 5 | 3, 4 | nfeqs | F/ x A == {x | p} | 
        
          | 6 |  | nfv | F/ x P | 
        
          | 7 | 5, 6 | nfim | F/ x A == {x | p} -> P | 
        
          | 8 |  | eleq2 | A == {x | p} -> (a e. A <-> a e. {x | p}) | 
        
          | 9 | 8 | bieq1d | A == {x | p} -> (a e. A <-> p <-> (a e. {x | p} <-> p)) | 
        
          | 10 |  | anr | G /\ x = a -> x = a | 
        
          | 11 | 10 | eleq1d | G /\ x = a -> (x e. {x | p} <-> a e. {x | p}) | 
        
          | 12 |  | abid | x e. {x | p} <-> p | 
        
          | 13 | 12 | a1i | G /\ x = a -> (x e. {x | p} <-> p) | 
        
          | 14 | 11, 13 | bitr3d | G /\ x = a -> (a e. {x | p} <-> p) | 
        
          | 15 | 9, 14 | syl5ibrcom | G /\ x = a -> A == {x | p} -> (a e. A <-> p) | 
        
          | 16 |  | hyp e | G /\ x = a -> (a e. A <-> p) -> P | 
        
          | 17 | 15, 16 | syld | G /\ x = a -> A == {x | p} -> P | 
        
          | 18 | 17 | exp | G -> x = a -> A == {x | p} -> P | 
        
          | 19 | 2, 7, 18 | eexdh | G -> E. x x = a -> A == {x | p} -> P | 
        
          | 20 | 1, 19 | mpi | G -> A == {x | p} -> P | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)