theorem elabed1 (A: set) (G P: wff) (a: nat) {x: nat} (p: wff x):
$ G /\ x = a -> (a e. A <-> p) -> P $ >
$ G -> A == {x | p} -> P $;
Step | Hyp | Ref | Expression |
1 |
|
ax_6 |
E. x x = a |
2 |
|
nfv |
F/ x G |
3 |
|
nfsv |
FS/ x A |
4 |
|
nfab1 |
FS/ x {x | p} |
5 |
3, 4 |
nfeqs |
F/ x A == {x | p} |
6 |
|
nfv |
F/ x P |
7 |
5, 6 |
nfim |
F/ x A == {x | p} -> P |
8 |
|
eleq2 |
A == {x | p} -> (a e. A <-> a e. {x | p}) |
9 |
8 |
bieq1d |
A == {x | p} -> (a e. A <-> p <-> (a e. {x | p} <-> p)) |
10 |
|
anr |
G /\ x = a -> x = a |
11 |
10 |
eleq1d |
G /\ x = a -> (x e. {x | p} <-> a e. {x | p}) |
12 |
|
abid |
x e. {x | p} <-> p |
13 |
12 |
a1i |
G /\ x = a -> (x e. {x | p} <-> p) |
14 |
11, 13 |
bitr3d |
G /\ x = a -> (a e. {x | p} <-> p) |
15 |
9, 14 |
syl5ibrcom |
G /\ x = a -> A == {x | p} -> (a e. A <-> p) |
16 |
|
hyp e |
G /\ x = a -> (a e. A <-> p) -> P |
17 |
15, 16 |
syld |
G /\ x = a -> A == {x | p} -> P |
18 |
17 |
exp |
G -> x = a -> A == {x | p} -> P |
19 |
2, 7, 18 |
eexdh |
G -> E. x x = a -> A == {x | p} -> P |
20 |
1, 19 |
mpi |
G -> A == {x | p} -> P |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)