theorem subsnss (A B: set): $ A C_ B -> subsn B -> subsn A $;
Step | Hyp | Ref | Expression |
1 |
|
ssel |
A C_ B -> x e. A -> x e. B |
2 |
|
ssel |
A C_ B -> y e. A -> y e. B |
3 |
2 |
imim1d |
A C_ B -> (y e. B -> x = y) -> y e. A -> x = y |
4 |
1, 3 |
imimd |
A C_ B -> (x e. B -> y e. B -> x = y) -> x e. A -> y e. A -> x = y |
5 |
4 |
alimd |
A C_ B -> A. y (x e. B -> y e. B -> x = y) -> A. y (x e. A -> y e. A -> x = y) |
6 |
5 |
alimd |
A C_ B -> A. x A. y (x e. B -> y e. B -> x = y) -> A. x A. y (x e. A -> y e. A -> x = y) |
7 |
6 |
conv subsn |
A C_ B -> subsn B -> subsn A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12),
axs_set
(ax_8)