theorem subsnss (A B: set): $ A C_ B -> subsn B -> subsn A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ssel | A C_ B -> x e. A -> x e. B | 
        
          | 2 |  | ssel | A C_ B -> y e. A -> y e. B | 
        
          | 3 | 2 | imim1d | A C_ B -> (y e. B -> x = y) -> y e. A -> x = y | 
        
          | 4 | 1, 3 | imimd | A C_ B -> (x e. B -> y e. B -> x = y) -> x e. A -> y e. A -> x = y | 
        
          | 5 | 4 | alimd | A C_ B -> A. y (x e. B -> y e. B -> x = y) -> A. y (x e. A -> y e. A -> x = y) | 
        
          | 6 | 5 | alimd | A C_ B -> A. x A. y (x e. B -> y e. B -> x = y) -> A. x A. y (x e. A -> y e. A -> x = y) | 
        
          | 7 | 6 | conv subsn | A C_ B -> subsn B -> subsn A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_12),
    
axs_set
     (ax_8)