Theorem imimd | index | src |

theorem imimd (a b c d e: wff):
  $ a -> b -> c $ >
  $ a -> d -> e $ >
  $ a -> (c -> d) -> b -> e $;
StepHypRefExpression
1 hyp h1
a -> b -> c
2 1 imim1d
a -> (c -> d) -> b -> d
3 hyp h2
a -> d -> e
4 3 imim2d
a -> (b -> d) -> b -> e
5 2, 4 syld
a -> (c -> d) -> b -> e

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp)