theorem subsni (A: set) (G: wff) (a b: nat):
  $ G -> subsn A $ >
  $ G -> a e. A $ >
  $ G -> b e. A $ >
  $ G -> a = b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | hyp h2 | G -> b e. A | 
        
          | 2 |  | hyp h1 | G -> a e. A | 
        
          | 3 |  | hyp h | G -> subsn A | 
        
          | 4 |  | anlr | G /\ x = a /\ y = b -> x = a | 
        
          | 5 | 4 | eleq1d | G /\ x = a /\ y = b -> (x e. A <-> a e. A) | 
        
          | 6 |  | anr | G /\ x = a /\ y = b -> y = b | 
        
          | 7 | 6 | eleq1d | G /\ x = a /\ y = b -> (y e. A <-> b e. A) | 
        
          | 8 | 4, 6 | eqeqd | G /\ x = a /\ y = b -> (x = y <-> a = b) | 
        
          | 9 | 7, 8 | imeqd | G /\ x = a /\ y = b -> (y e. A -> x = y <-> b e. A -> a = b) | 
        
          | 10 | 5, 9 | imeqd | G /\ x = a /\ y = b -> (x e. A -> y e. A -> x = y <-> a e. A -> b e. A -> a = b) | 
        
          | 11 | 10 | bi1d | G /\ x = a /\ y = b -> (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b | 
        
          | 12 | 11 | ealde | G /\ x = a -> A. y (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b | 
        
          | 13 | 12 | ealde | G -> A. x A. y (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b | 
        
          | 14 | 13 | conv subsn | G -> subsn A -> a e. A -> b e. A -> a = b | 
        
          | 15 | 3, 14 | mpd | G -> a e. A -> b e. A -> a = b | 
        
          | 16 | 2, 15 | mpd | G -> b e. A -> a = b | 
        
          | 17 | 1, 16 | mpd | G -> a = b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_12),
    
axs_set
     (ax_8)