theorem subsni (A: set) (G: wff) (a b: nat):
$ G -> subsn A $ >
$ G -> a e. A $ >
$ G -> b e. A $ >
$ G -> a = b $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h2 |
G -> b e. A |
2 |
|
hyp h1 |
G -> a e. A |
3 |
|
hyp h |
G -> subsn A |
4 |
|
anlr |
G /\ x = a /\ y = b -> x = a |
5 |
4 |
eleq1d |
G /\ x = a /\ y = b -> (x e. A <-> a e. A) |
6 |
|
anr |
G /\ x = a /\ y = b -> y = b |
7 |
6 |
eleq1d |
G /\ x = a /\ y = b -> (y e. A <-> b e. A) |
8 |
4, 6 |
eqeqd |
G /\ x = a /\ y = b -> (x = y <-> a = b) |
9 |
7, 8 |
imeqd |
G /\ x = a /\ y = b -> (y e. A -> x = y <-> b e. A -> a = b) |
10 |
5, 9 |
imeqd |
G /\ x = a /\ y = b -> (x e. A -> y e. A -> x = y <-> a e. A -> b e. A -> a = b) |
11 |
10 |
bi1d |
G /\ x = a /\ y = b -> (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b |
12 |
11 |
ealde |
G /\ x = a -> A. y (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b |
13 |
12 |
ealde |
G -> A. x A. y (x e. A -> y e. A -> x = y) -> a e. A -> b e. A -> a = b |
14 |
13 |
conv subsn |
G -> subsn A -> a e. A -> b e. A -> a = b |
15 |
3, 14 |
mpd |
G -> a e. A -> b e. A -> a = b |
16 |
2, 15 |
mpd |
G -> b e. A -> a = b |
17 |
1, 16 |
mpd |
G -> a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12),
axs_set
(ax_8)