Theorem eqsubsnabd | index | src |

theorem eqsubsnabd (G: wff) (a: nat) {x: nat} (p: wff x):
  $ G -> p -> x = a $ >
  $ G -> subsn {x | p} $;
StepHypRefExpression
1 subsnss
{x | p} C_ {x | x = a} -> subsn {x | x = a} -> subsn {x | p}
2 hyp h
G -> p -> x = a
3 2 ssabd
G -> {x | p} C_ {x | x = a}
4 subsnsn2
subsn {x | x = a}
5 4 a1i
G -> subsn {x | x = a}
6 1, 3, 5 sylc
G -> subsn {x | p}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)