Theorem cbvexh | index | src |

theorem cbvexh {x y: nat} (p q: wff x y):
  $ F/ y p $ >
  $ F/ x q $ >
  $ x = y -> (p <-> q) $ >
  $ E. x p <-> E. y q $;
StepHypRefExpression
1 noteq
(A. x ~p <-> A. y ~q) -> (~A. x ~p <-> ~A. y ~q)
2 1 conv ex
(A. x ~p <-> A. y ~q) -> (E. x p <-> E. y q)
3 hyp h1
F/ y p
4 3 nfnot
F/ y ~p
5 hyp h2
F/ x q
6 5 nfnot
F/ x ~q
7 hyp e
x = y -> (p <-> q)
8 7 noteqd
x = y -> (~p <-> ~q)
9 4, 6, 8 cbvalh
A. x ~p <-> A. y ~q
10 2, 9 ax_mp
E. x p <-> E. y q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)