theorem cbvexh {x y: nat} (p q: wff x y): $ F/ y p $ > $ F/ x q $ > $ x = y -> (p <-> q) $ > $ E. x p <-> E. y q $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noteq | (A. x ~p <-> A. y ~q) -> (~A. x ~p <-> ~A. y ~q) |
|
2 | 1 | conv ex | (A. x ~p <-> A. y ~q) -> (E. x p <-> E. y q) |
3 | hyp h1 | F/ y p |
|
4 | 3 | nfnot | F/ y ~p |
5 | hyp h2 | F/ x q |
|
6 | 5 | nfnot | F/ x ~q |
7 | hyp e | x = y -> (p <-> q) |
|
8 | 7 | noteqd | x = y -> (~p <-> ~q) |
9 | 4, 6, 8 | cbvalh | A. x ~p <-> A. y ~q |
10 | 2, 9 | ax_mp | E. x p <-> E. y q |