Theorem cbval | index | src |

theorem cbval {x y: nat} (p: wff x) (q: wff y):
  $ x = y -> (p <-> q) $ >
  $ A. x p <-> A. y q $;
StepHypRefExpression
1 nfv
F/ y p
2 nfv
F/ x q
3 hyp e
x = y -> (p <-> q)
4 1, 2, 3 cbvalh
A. x p <-> A. y q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)